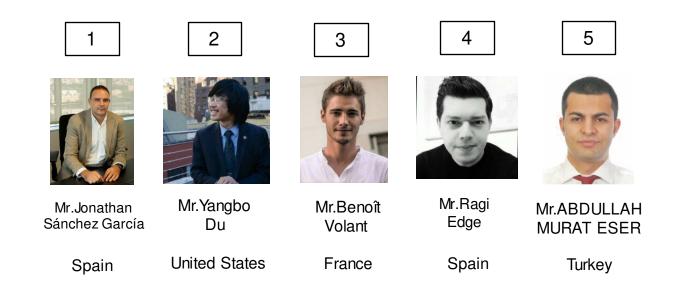


HIGH-SPEED RAIL : THE RIGHT SPEED FOR OUR PLANET Under the High Patronage of his Majesty King Mohammed VI

Session2.5, Room Fez 2 Environment / CO2 emissions

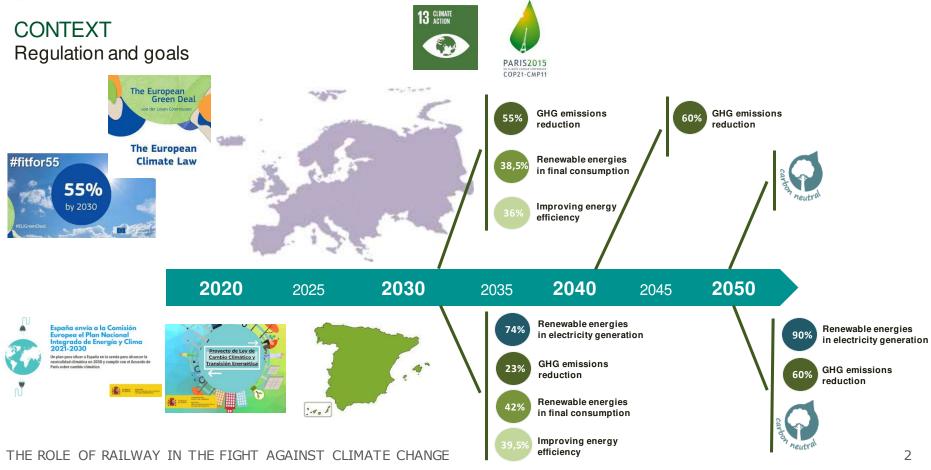

Moderator : Ms. Lucie Anderton Head of Sustainability, UIC, France

Session2.5 Environment / CO2 emissions Speaker Lists;

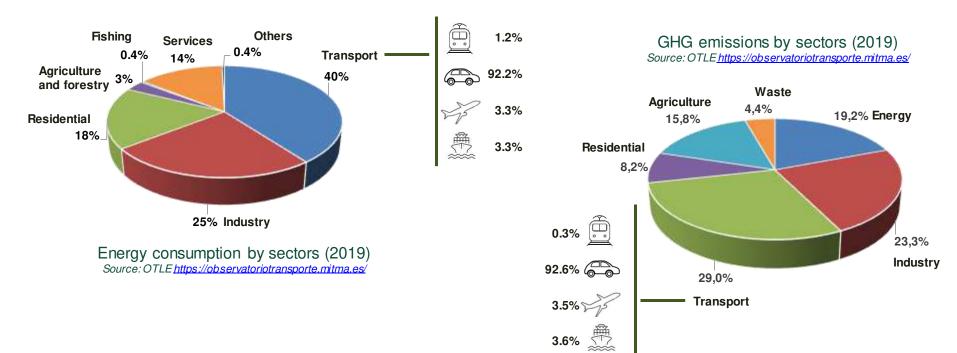
HIGH-SPEED RAIL : THE RIGHT SPEED FOR OUR PLANET Under the High Patronage of his Majesty King Mohammed VI

11THWORLD CONGRESS OF HIGH-SPEED RAIL

Marrakech, 7-10 MARCH 2023

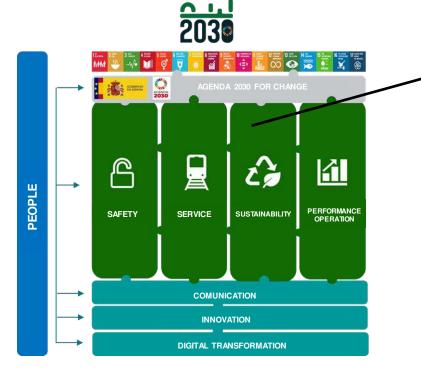

THE ROLE OF RAILWAY IN THE FIGHT AGAINST CLIMATE CHANGE

Jonathan Sánchez García Deputy Director of Corporate Responsibility, Sustainability and Brand. Adif. Spain Session5-2.5 Environment / CO2 emissions



CONTEXT

Railway energy consumption and GHG emissions in Spain



THE ROLE OF RAILWAY IN THE FIGHT AGAINST CLIMATE CHANGE

MASTER PLAN TO COMBAT CLIMATE CHANGE Strategic framework

MASTER PLAN TO COMBAT CLIMATE CHANGE

Main lines of action and goals

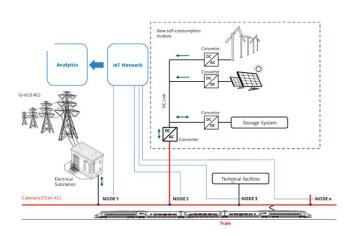
MASTER PLAN TO COMBAT CLIMATE CHANGE Plan structure

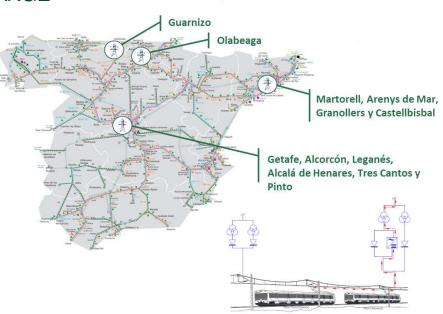
SCOPE	LINES OF ACTION	PROGRAMMES	
	1. Energy Management	1.1 Smart Grid implementation1.2 Telematics measurement and control systems1.3 Management measures	
MITIGATION CULTURE AND ENVIROMENTAL AWARENESS ADAPTATION	2. Energy Efficiency	 2.1 Lighting improvement 2.2 Efficiency in HVAC and DHW equipment 2.3 Equipment improvement 2.4 Reversible Substations 2.5 Reactive power reduction 	
	3. Decarbonisation and renewable energy	3.1 Electrification programme3.2 Fossil fuel substitution3.3 Renewable energies promotion3.4 Rail modal shift promotion	
	4. Improving resilience of railway infrastructure	4.1 Monitoring and follow-up of CC impacts 4.2 Climate impact assessment of railway infrastructure	
	5. Culture and awareness	5.1 Actions for employees5.2 Actions for partners and suppliers5.3 Transparency and information improvement	

THE ROLE OF RAILWAY IN THE FIGHT AGAINST CLIMATE CHANGE

MASTER PLAN TO COMBAT CLIMATE CHANGE

Gobernance model and implementation





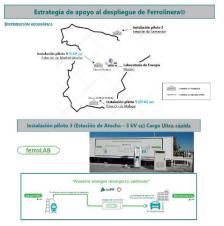
MASTER PLAN TO COMBAT CLIMATE CHANGE

Main actions in mitigation

Reversible traction power substations

Railway smartgrid

THE ROLE OF RAILWAY IN THE FIGHT AGAINST CLIMATE CHANGE



MASTER PLAN TO COMBAT CLIMATE CHANGE Main actions in mitigation

Charging points for electric vehicles

Electrification of railway sections

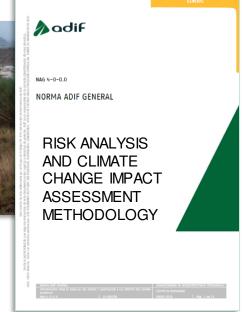
THE ROLE OF RAILWAY IN THE FIGHT AGAINST CLIMATE CHANGE

MASTER PLAN TO COMBAT CLIMATE CHANGE Main actions in mitigation

'Green' electric power supply (with Guarantees of Origin)

Power self-supply Plan

MASTER PLAN TO COMBAT CLIMATE CHANGE


Main actions in adaptation

Monitoring the impact of climate change on railway infrastructures

adif	40 himatha 63.5%
TODAS is: causes climatológica: 136.0% 97.9% 74.4% 63.4% 58.6% 56.9% 68.3% AndLISIS DE LA DISPONIBILIDAD DE LA INFRAESTRUCTURA - RED CONVENCIONAL por Climatología (Años 2021 y 2020 vs Periodo 2018-2019) Image: Convencional de la	63.5%
ANALISIS DE LA DISPONIBILIDAD DE LA INFRAESTRUCTURA - RED CONVENCIONAL por Climatología (Años 2021 y 2020 vs Periodo 2018-2019)	danacije i serte ne Teori Stori Teori i tanje Ale i tanje i tanje Ale i tanje i tanje Ale
ANALISIS DE LA DISPONIBILIDAD DE LA INFRAESTRUCTURA - RED CONVENCIONAL por Climatología (Años 2021 y 2020 vs Periodo 2018-2019)	rhener Scholler Herber - Harren Angele Harren Harren Angele Harren Angel
	~
норенски ако	170
· · · · ·	2.6
· · · · · · · · · · · · · · · · · · ·	N
	and the second
and the second s	1. He her
	· · · · · ·

Nudo de La Encina (railway junction). September 2019

Assessing the impact of climate change on railway infrastructures

HIGH-SPEED RAIL : THE RIGHT SPEED FOR OUR PLANET Under the High Patronage of his Majesty King Mohammed VI

THANK YOU

Jonathan Sánchez García jonsanchez@adif.es www.adif.es

HIGH-SPEED RAIL : THE RIGHT SPEED FOR OUR PLANET Under the High Patronage of his Majesty King Mohammed VI

11THWORLD CONGRESS OF HIGH-SPEED RAIL

Marrakech, 7-10 MARCH 2023

AUDITED CARBON REDUCTIONS FOR ENCOURAGING SUSTAINABLE MODAL SHIFT

Yangbo DU Managing Partner - Investments, INNOVO Net Zero, United States Session 5 – 2.5 Environment / CO2 emissions

OUTLINE

Overview of audited carbon reductions [ACRs] and how they can encourage shift to rail

- * Precedents for promoting clean growth and development and sustainable modal shift
- How ACRs compare against traditional carbon credits
- Business and climate case for ACRs

Implications for climate-smart urban and territorial development

- Double materiality and induced impacts
- Case studies
 - Established: Tokyo (Shinagawa), Toyama, Lyon (Part
 - Dieu), Amsterdam (Zuidas)
 - Emerging: New York (Queens), Albany (Rensselaer),
 - Baltimore (Penn), Buffalo (Central)

Integrating ACRs into practice - launch of Greenhouse Gas Initiative [GHGi] and Net Zero Marketplace

PRECEDENTS UNDERLYING AUDITED CARBON REDUCTIONS

Clean Development Mechanism [CDM] - UN Framework Convention on Climate Change

Delhi Metro Rail Corporation – over half a million tonnes of additional CO2 emissions avoided each year since 2011

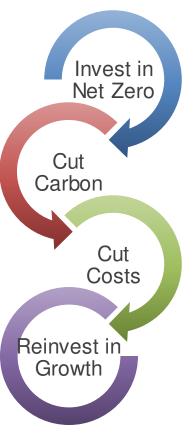

First urban rail system to earn carbon credits

External Costs of Transport Handbook – European Commission

- Basis for True Cost Calculator by Solutionary Rail (2021)
 - Developed in support of efforts to shift medium/long-haul freight in U.S. to rail

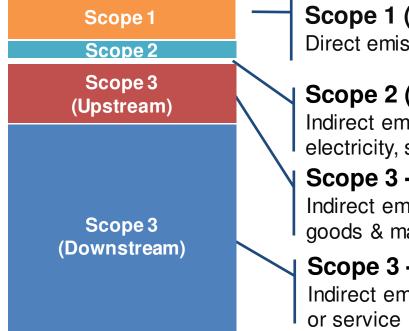
Private sector supplier engagement on reducing Scope 3 greenhouse gas emissions

2019 EU Handbook on the External Costs of Transport



WHAT ARE AUDITED CARBON REDUCTIONS?

TRADITIONAL CARBON CREDITS	AUDITED CARBON REDUCTIONS
Sold off for cash value	Passed from suppliers to buyers along supply chains
External market	Internal market (pricing less of a concern)
Offset or abatement	Abatement only



WHY AUDITED CARBON REDUCTIONS?

Scope 1 (13%)

Direct emissions from owned or controlled sources

Scope 2 (5%)

Indirect emissions from purchased electricity, steam, heating, or cooling Scope 3 – Upstream (17%) Indirect emissions from purchased goods & materials

Scope 3 – Downstream (65%) Indirect emissions from use of product

87% outside direct control (Accenture, 2021)

IMPLICATIONS FOR CLIMATE-SMART, EQUITABLE TERRITORIAL DEVELOPMENT

Double materiality principle – broader economic, social, and environmental impact of a firm's decisions

 Another incentive to site destinations with location efficiency in mind

Reducing induced emissions ("Scope 3+"/"Scope 4")

- Reversing "job sprawl" by encouraging clustering of destinations in walkable and transit-accessible places
 - Multi-sectoral coordination advised

Integrated planning essential given path dependence

- Best to have a strong urban core to "seed" activity centres along rail lines
 - Opportunity in normality of hybrid work

EXTENDING AN ALREADY-STRONG CENTRAL BUSINESS DISTRICT

Shinagawa Station area, Tokyo (left) and Sunnyside Yard area, New York (right)

Each station (or future station) area as an extension of main central business district

STRENGTHENING AN URBAN CORE BY HSR LINK TO A LARGER METROPOLIS

Toyama Station area (left) and Albany-Rensselaer Station area (right)

* Fast existing rail link to Tokyo (within two hours) and future rail link to New York (within one hour)

POSITIONING STATION AREAS AS MAIN CORE ACTIVITY CENTRES

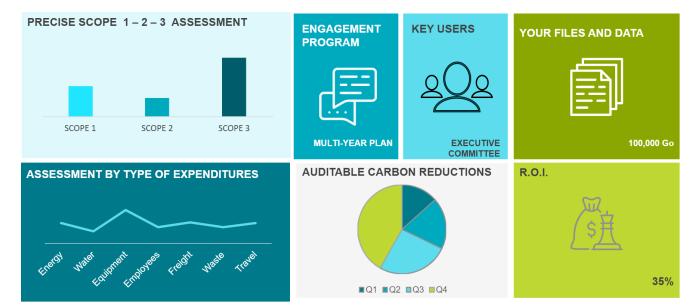
Lyon Part Dieu (left) and Baltimore Midtown (right)

Effectively creating a second central business district comprising the station area (indicatively in the case of Baltimore)

CREATING STRONG SECONDARY BUSINESS DISTRICTS

Amsterdam Zuidas Station area (left) and Buffalo Central Station area (right)

Transit-oriented outlying business districts enabled by frequent rail connections (indicatively in the case of Buffalo)


INTEGRATING AUDITED CARBON REDUCTIONS INTO MAINSTREAM PRACTICE

Greenhouse Gas Initiative [GHGi] (pilot assessments under way)

 Insights on GHG abatement potential – no full footprint exercise necessary

Profitable Net Zero Marketplace (now live)

- Platform for buying and selling with ACRs
- Progressive rollout through 2023

HIGH-SPEED RAIL : THE RIGHT SPEED FOR OUR PLANET Under the High Patronage of his Majesty King Mohammed VI

THANK YOU

Yangbo DU yangbo.du@innovo-network.com

HIGH-SPEED RAIL : THE RIGHT SPEED FOR OUR PLANET Under the High Patronage of his Majesty King Mohammed VI

11THWORLD CONGRESS OF HIGH-SPEED RAIL

Marrakech, 7-10 MARCH 2023

Present this study of a LIFE CYCLE ASSESMENT-BASED TOOL FOR LOW EMISSION TRAINS DEPLOYMENT

Benoît, Volant PhD Candidate, Ikos, France Session5-2.5 Environment / CO2 emissions

Context & motivations

France's regional trains are mostly **electric trains with pantographs and diesel tanks** for rails without catenaries

National strategy aims for a **28%** emission reduction of transports for **2030** compared to 2015 [French Ministry of transport, 2021]

Unelectrified lines could be closed if no low emission alternative is found

Emerging low emission trains could reduce unelectrified lines environmental impact

40 years

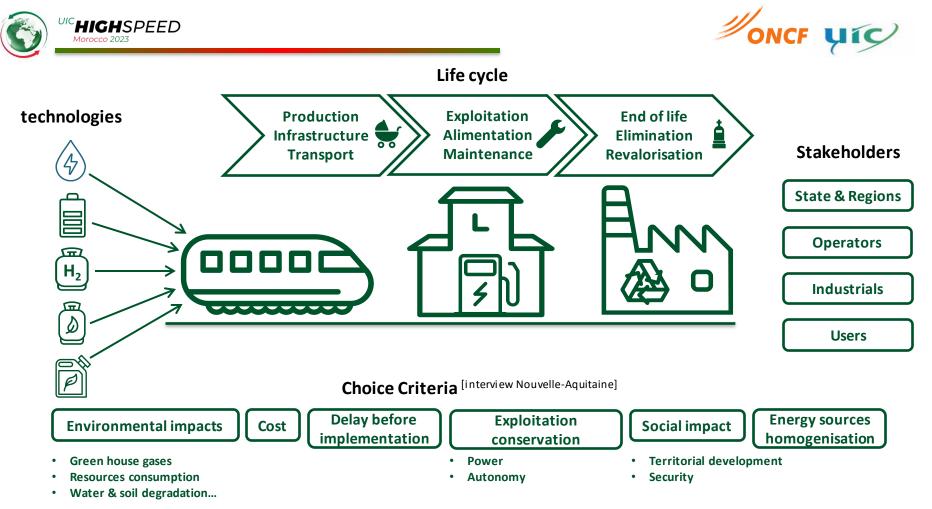
Trains lifetime

20 years

Trains mid-life : retrofit maintenance

2023 to 2034

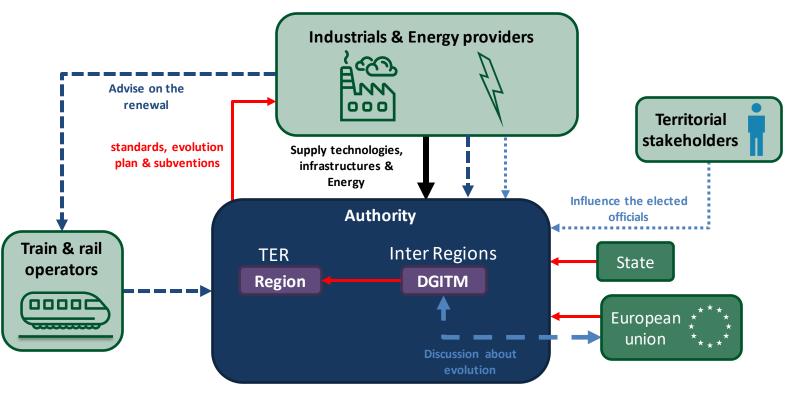
Many France's regional trains reach mid-life



A complex technological context

- Which technologies will be mature enough to replace Diesel trains?
- Which analysis method of environmental impact is best suited to compare these technologies?
- Does the literature contains similar analysis for trains or other vehicles?

Technologies		Characteristics	TRL ^[DoD 2010]	
	Hybrid	1000 km max autonomy 20% Consumption reduction	2022 2023	8 9
	Batteries	efficiency > 70% Avoid direct emissions	2022 2024	8 9
H ₂	Hydrogen	600 km max autonomy Avoid direct emissions	2016 2024 2026	7 8 9
	Biogas	1000 km max autonomy	2017	6
P	Biofuel	1000 km max autonomy	2019 2021	7 8



LCA-BASED TOOL FOR LOW EMISSION TRAINS DEPLOYMENT

Interactions between stakeholders

LCA-BASED TOOL FOR LOW EMISSION TRAINS DEPLOYMENT

Low emission train design and deployment: a complex issue

Locks regarding the right choice of diesel trains replacement

Environmental vs. economic performance depending on the territory

* Operation vs. infrastructure costs depending on the type of line

Environmental and/or economic performance vs. technological maturity

Locks to developing the right evaluation method

- * Measurement of environmental performance vs. technological maturity
 - maturity assessment
 - mathematical model of uncertainties
- Measurements accuracy vs. complexity of their implementation

Exhaustiveness of criteria vs. relevance & user friendliness

Environmental assessment methods selection

Environmental risk assessment

- * effects on the environment of a disruptor that may disrupt it
 - Pesticides, aliments and pharmaceutical products

Environmental performance KPI

* Identification and following of an organism environmental KPI

Environmental audit

- * Information's review of the environmental impact of an economic activity
 - To show compliance with a regulation or to find a way to comply

Environmental Impact Assessment (EIA)

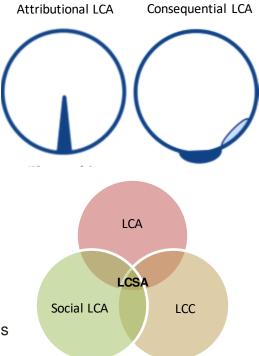
A process that assesses the risks of environmental impacts arising from a project from the planning stage

Not designed to confront different criteria and stakeholders nor to apprehend uncertainty

Life Cycle Assessment (LCA)^[ISO 14044]

compilation of the inputs and outputs to evaluate the potential environmental impacts of a product system throughout its life cycle Thought for comparison

Life Cycle Assessment


Different LCA definitions

- Fast LCA
- Simplified LCA [Descos, 2017]
- Prospective LCA
- Attributional & Consequential LCA [Ekvall 2019]
- Social & Sustainability LCA [Kloepffer 2008]

Uncertain integration and sensitivity analysis [Leroy et al. 2013]

Methods to value & optimise LCA results [Moni et al. 2020]

- Communicate assumptions
- Use multiple scenarios in terms of co-products usage and allocation methods
- Relevance analysis to focus on more relevant processes

Benchmark

Vehicules LCA

- Trains, parallel with Netherland [Kapetanović et al. 2022]
 - The analysis encompassed the retrofit of a standard vehicle to its hybrid-electric, fuel cellelectric and battery-electric counterparts, and a comparative assessment of life cycle emissions during a ten-year time horizon.

Differences with electric cars [Zackrisson et al. 2010]

- lithium iron phosphate (LFP)
- The functional unit was defined as a 10 kWh battery for a plugin hybrid electric vehicle capable of sustaining 3 000 charge cycles at 80% maximum discharge giving at least a 200 000 km operation during the vehicle design lifetime.

Parallel with buses [Ager-Wick Ellingsen et al. 2022]

Currently, Li-ion battery technology for BEBs mainly pertains to lithium titanium oxide (LTO), lithium iron phosphate (LFP), and lithium nickel manganese cobalt oxide (NMC).

Catenaries

Next steps

Tailor an **LCA-based tool**

- Hybrid between Attributional & Consequential LCA
- Importance of implementing Social & Sustainability LCA

Measure uncertainty

- Build a mathematical model
- Consider technological variability

Create an **analysis tool**

- considering all choice criteria and temporality factors
 - Each technology maturity
 - · Current and future traction and infrastructure aging
 - Environmental impact reduction deadlines

 $\boldsymbol{\star}$ To help choose an adequate technology regarding traction and infrastructures

THANK YOU

Benoît Volant Ikos consulting – CentraleSupélec bvolant@ikosconsulting.com

References

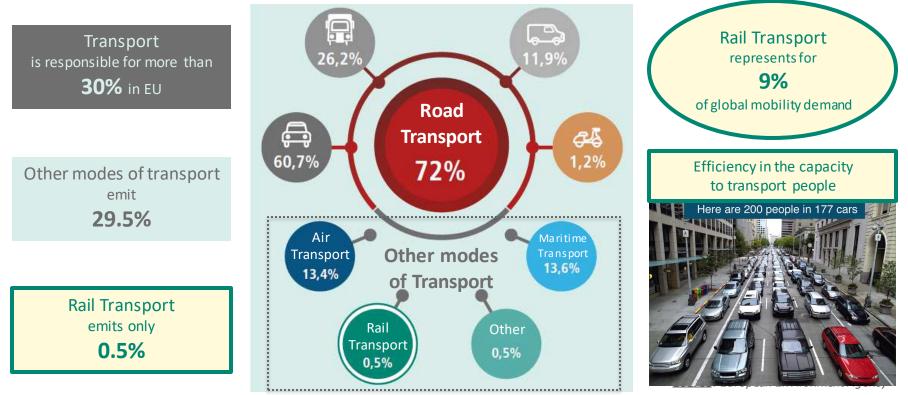
- 1. Stratégie nationale pour le développement du fret ferroviaire, Ministère chargé des transports, 2021
- 2. Department of Defense (2010), Defense Acquisition Guidebook
- Moni, SM, Mahmud, R, High, K, Carbajales-Dale, M. Life cycle assessment of emerging technologies: A review. J Ind Ecol. 2020; 24: 52– 63. https://doi.org/10.1111/jiec.12965
- Walczak, K. A., Hutchins, M. J., & Dornfeld, D. (2014). Energy system design to maximize net energy production considering uncertainty in scale-up: A case study in artificial photosynthesis. Procedia CIRP, 15, 306–312. https://doi.org/10.1016/j.procir.2014.06.032
- 5. International Standards Organization. (2006b). ISO 14044: Environmental management - life cycle assessment requirements and guidelines. ISO 14044:2006(E).
- 6. Descos, I., & de Caevel, B. (2017). Qu'est-ce qu'une ACV simplifiée ? Comment simplifier une ACV?
- Ekvall, T. (2019). Attributional and Consequential Life Cycle Assessment. In M. J. Bastante-Ceca, J. L. Fuentes-Bargues, L. Hufnagel, F. Mihai, & C. latu (Eds.), Sustainability Assessment at the 21st century. IntechOpen. https://doi.org/10.5772/intechopen.89202

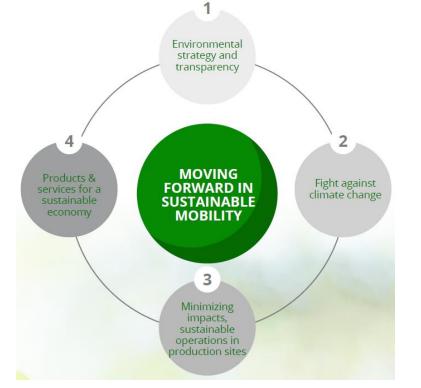
- 8. Leroy, Y. & Lasvaux, S. (2013). De la gestion des incertitudes en analyse de cycle de vie. Marché et organisations, 17, 65-82. https://doi.org/10.3917/maorg.017.0065
- 9. Kloepffer, W. Life cycle sustainability assessment of products. Int J Life Cycle Assess 13, 89 (2008). https://doi.org/10.1065/lca2008.02.376
- Kapetanović, M., Núñez, A., van Oort, N., Goverde, R. M. P., & Kapetanovic@tudelft, M. (2022). Life Cycle Assessment of Alternative Traction Options for Non-Electrified Regional Railway Lines.
- Zackrisson, M., Avellán, L., & Orlenius, J. (2010). Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – Critical issues. Journal of Cleaner Production. 18. 1519-1529. 10.1016/j.jclepro.2010.06.004.
- Ager-Wick Ellingsen, L., Jayne Thorne, R., Wind, J., Figenbaum, E., Romare, M., & Nordelöf, A. (2022). Life cycle assessment of battery electric buses. Transportation Research Part D: Transport and Environment, 112, 103498. https://doi.org/10.1016/J.TRD.2022.103498

11THWORLD CONGRESS OF HIGH-SPEED RAIL

Marrakech, 7-10 MARCH 2023

TALGO's Avril train: A sustainable industrial landmark through EPD design


Ragi Edde Head of Business Development Middle East & Africa TALGO, Spain Session5-2.5 Environment / CO2 emissions


CO2 emissions per passenger

Advancing environmental sustainability and sustainable mobility

TALGO's Avril train: an industrial landmark of EPD design

CERTIFICATE EPD REGISTRATION

This document is to confirm that

PATENTES TALGO S.L.U

has published an Environmental Product Declaration for

TALGO AVRIL

with registration number S-P-06579 in the International EPD[®] System.

The EPD has been developed in accordance with ISO 14025, the General Programme Instructions for the International EPD® System and the reference PCR 2009:05. Verification was performed by Eva Martinez Herrero.

This document is valid until 2027-09-15, or until the EPD is deregistered and no longer published at www.environdec.com.

Talgo AVRIL product platform

MASS (kg)	327.210,7	
LENGTH (mm)	202.000	
CAPACITY (seats)	579 + 2 PRM	*
DOORS (per side)	10 - 1 per car	
MAX SPEED (Km/h)	363	I TA DA HAL
INTERIOR WIDTH (mm)	3.100	
POWER SUPPLY VOLTAGE (kv)	25	And the state of t
POWER (kW)	8.000	STALL STORAGE STALL
ENERGY CONSUMPTION (kWh/km)	< 13,7	
RECOVERABILITY/RECYCLABILITY (%)	96,9% / 93,8%	
LIFE CYCLE (year)	40	A THE REAL PROPERTY AND A THE
		Source: EPD Platform TALGO AVRIL

Talgo AVRIL product platform

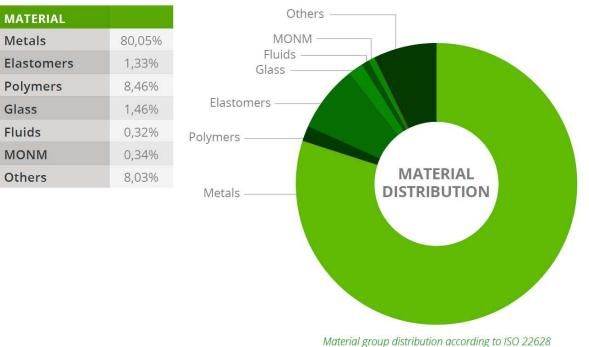
MASS (kg)	327.210,7	Short Coaches Configuration	
LENGTH (mm)	202.000	个个Width Coaches	
CAPACITY (seats)	579 + 2 PRM	3+2 个个CAPACITY	
DOORS (per side)	10 - 1 per car		Ш Ш
MAX SPEED (Km/h)	363	Lightweight design	E E
INTERIOR WIDTH (mm)	3.100	Lightweight design ↓ ↓ 30%	A EFI
POWER SUPPLY VOLTAGE (kv)	25	VV J070	
POWER (kW)	8.000		Σ
ENERGY CONSUMPTION (kWh/km)	< 13,7	Unlimited Accessibility	MAXI
RECOVERABILITY/RECYCLABILITY (%)	96,9% / 93,8%	deck = platform	2
LIFE CYCLE (year)	40	$\sqrt{120\%}$ Dwell Time	

Source: EPD Platform TALGO AVRIL

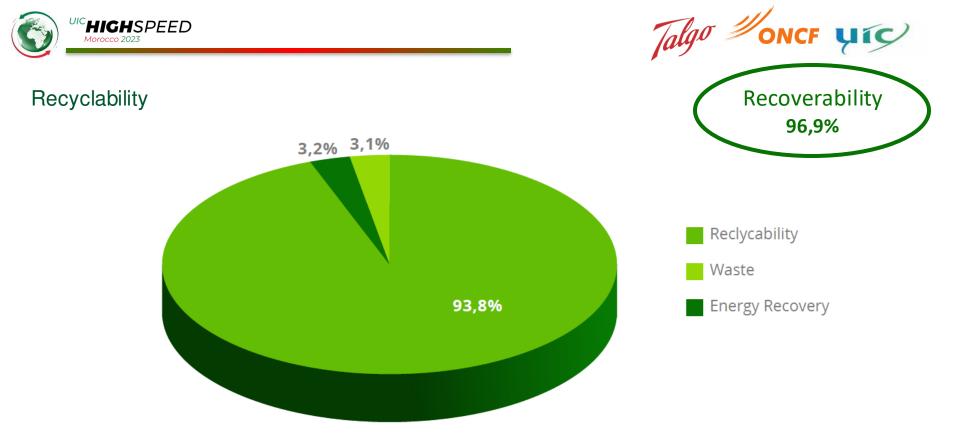
Talgo AVRIL product platform

Source: EPD Platform TALGO AVRIL

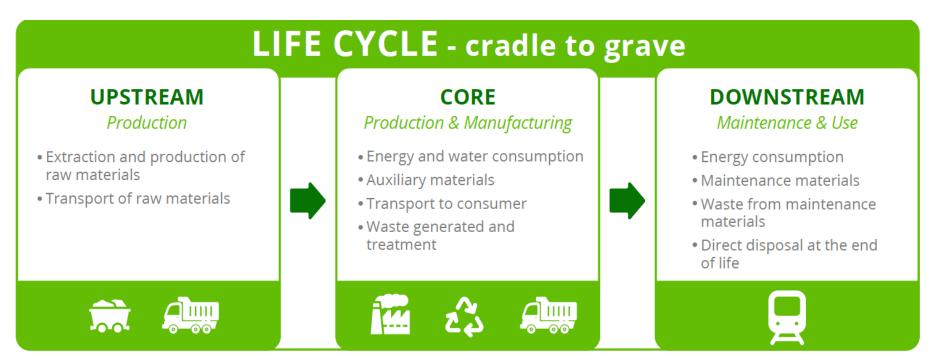
TALGO's Avril train: an industrial landmark of EPD design


MAXIMUM EFFICIENCY

Glass


Innovative Manufacturing

Source: EPD Platform TALGO AVRIL


Recyclability, energy recovery and waste values according to UNI-LCA-001.00

Source: EPD Platform TALGO AVRIL

LCA - Life Cycle Analysis

Source: EPD Platform TALGO AVRIL

Model	Company	Mass (Tn)	Length (m)	Speed (km/h)	Capacity (nº pax)	Energy Consumption (kWh/km)	GWP Emissions (g.CO _{2eq} / pax.km)	Recoverability (%)	Recyclability (%)	Noise Stationary (dBA)	Noise Starting (dBA)	Noise Pass-by (dBA)
High Speed Train average	Trains Manufacturer	[400 – 500]	~200	[250 - 360]	[400 - 600]	[10 - 20]	[5 - 25]	[94 - 99]	[93 - 96]	[60 - 70]	[80 - 90]	[>90]
TALGO AVRIL	TALGO	330	202	363	581	13,7	8,56	96,9	93,8	64	79	92

<u>Source</u>: EPD

THANK YOU

11THWORLD CONGRESS OF HIGH-SPEED RAIL

Marrakech, 7-10 MARCH 2023

Evaluation of Environmental Impacts and Economic Benefits of Greenhouse Gas Emissions of High – Speed Rail Lines in Türkiye

Abdullah Murat, ESER Engineer, Turkish State Railways, Türkiye Parallel Sesion 5 – 2.5 Environment/CO2 emssions

CONTENT

Existing and planned high – speed rail lines in Türkiye

- ✤ 1.432 km of high speed rail line (HSR) is under operation
- ✤ 3.710 km of high speed rail line (HSR) is under construction until 2027

Data collecting

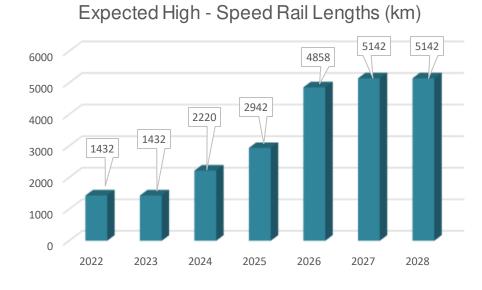
TCDD, Scientific studies, guidelines, handbooks and statistical datasets

Methodology

- Routes, passenger traffic demands and assumptions on HSR
- Environmental impacts Greenhouse Gas Emissions
- Economic benefits Externality costs

Conclusion

Evaluation of Environmental Impacts and Economic Benefits of Greenhouse Gas Emissions of High – Speed Rail Lines in Türkiye 2



3

EXISTING AND PLANNED HIGH - SPEED RAIL LINES IN TÜRKİYE

Existing and planned high – speed rail lines were planned as double lines

Stations		Distance (km)	Operating Status	Opening Date
Ankara	Eskişehir	219	Open	2009
Polatlı	Konya	225	Open	2011
Eskişehir	İstanbul	162	Open	2014
Konya	Karaman	110	Open	2021
Ankara	Sivas	394	Not Opened	2024
Halkalı	Kapıkule	229	Not Opened	2025
Karaman	Ulukışla	132	Not Opened	2025
Yenice	İzmir	547	Not Opened	2026
Bandırma	Osmaneli	201	Not Opened	2026
Adana	Gaziantep	210	Not Opened	2026
Yerköy	Kayseri	142	Not Opened	2027

DATA

Scientific studies

Environmental impacts of HSRs and GHG reduction of HSTs


Guidelines and handbooks

- IPCC Guidelines for National Greenhouse Gas Inventories, IPCC 2006
 - GHG emission calculations and coefficients according to modes of transportation, vehicle types and fuel types
- Guide to Cost Benefit analysis of Investment Projects, European Commission 2014
 - Social discount rate (5%), cash flow, ENPV and etc.
- Handbook on the External Costs of Transport, European Commission 2019
 - Externality costs of transportation modes according to vehicle types

DATA / GREENHOUSE GAS EMISSIONS

GHG emissions of transport constitutes 15,40 % of Türkiye's total GHG emissions, while it constitutes 21,11 % of total GHG emissions of Annex I parties.

Evaluation of Environmental Impacts and Economic Benefits of Greenhouse Gas Emissions of High – Speed Rail Lines in Türkiye 5

6

METHODOLOGY

Passenger traffic demands according to the HSR routes determined in the context of this study.

- Distances,
- Forecast for 2030 and 2040
- Passenger traffic were estimated between 2023 2042
- Traffic assumed as 20 % existing, 50 % diverted and 30 % generated
- The routes with aviation; 70 % cars, 20 % coaches and 10 % airplanes
- The routes without aviation; 75 % cars and 25 % coaches

Routes	Rail Dist.	Road Dist.	Aviation Dist.	Passenger Demands (Passanger)	
	Km	Km	Km	2030	2040
Ankara - İstanbul	381	322	323	3.540.108	5.295.468
Ankara - Eskişehir	219	233		1.100.924	1.675.931
Ankara - Konya	283	284		2.069.382	3.072.156
Ankara - Karaman	393	392		821.190	1.228.909
İstanbul - Konya	548	597	428	1.609.140	2.407.031
İstanbul - Karaman	658	705		321.828	481.406
İstanbul - Eskişehir	162	210		257.432	397.979
Ankara - Sivas	394	426	344	2.016.496	2.831.778
Ankara - Kayseri	299	306		1.106.376	1.643.381
Ankara - İzmir	627	581	543	1.773.751	2.653.655
Bandırma - Bursa	95	103		549.636	836.709
Bursa - Ankara	419	423		468.752	639.934
Bursa - Eskişehir	200	191		386.224	564.833
İstanbul - Bursa	174	153		632.172	1.035.997
Kapıkule - İstanbul	229	248		975.450	1.494.436
Konya - Karaman	132	111		821.190	1.228.909
Konya - Ulukışla	242	195		827.590	1.239.149
Adana - Gaziantep	210	222		1.720.538	2.609.679

7

	Passenger-km	Total Passenger	
Routes	Million pkm	Million Passenger	
Ankara - İstanbul	32.353	84,92	
Ankara - Eskişehir	5.850	26,71	
Ankara - Konya	14.031	49,58	
Ankara - Karaman	7.684	19,55	
İstanbul - Konya	20.226	36,91	
İstanbul - Karaman	4.854	7,38	
İstanbul - Eskişehir	969	5,98	
Ankara - Sivas	17.089	43,37	
Ankara - Kayseri	6.425	21,49	
Ankara - İzmir	22.658	36,14	
Bandırma - Bursa	1.073	11,3	
Bursa - Ankara	3.827	9,13	
Bursa - Eskişehir	1.556	7,78	
İstanbul - Bursa	2.348	13,49	
Kapıkule - İstanbul	4.798	20,95	
Konya - Karaman	2.479	18,78	
Konya - Ulukışla	4.253	17,57	
Adana - Gaziantep	7.412	35,3	
Average	7.994	23,32	
Total	159.885	466,33	

HIGHSPEED

METHODOLOGY / PASSENGER TRAFFIC

Expected HST passenger is 466,33 Million on total and 23,32 Million per year.

Total passenger recorded between 2017 – 2022* for 4 different HSR routes 37,59 Million on total and 7,52 Million per year. These routes which are in operation;

- Ankara İstanbul
- ✤ Ankara Eskişehir
- Ankara Konya
- İstanbul Konya

*Due to COVID-19 restrictions, records of 2020 is discarded and 5 years data is considered

METHODOLOGY / CALCULATION OF ENVIRONMENTAL IMPACTS

Environmental impacts of road vehicles are calculated by the formula illustrated,Tier 1 (Equation 1, 4, 5 and 6)*

Environmental impacts of aviation are calculated by the formula illustrated,Tier 2 (Equation 2 and 3)*

*Ref: IPCC Guidelines for National Greenhouse Gas Inventories Equation 1: Emissions = $\sum_{a} [Fuel Consumed_{a} \times Emission Factor_{a}]$

a: fuel type (gasoline, diesel, LPG)

Equation 2: Total Emissions = LTO Emissions + Cruise Emissions*

Equation 3: LTO Emissions = Number of LTOs x Emission factor LTO

LTO: Landing Take off

*GHG emission during cruise emissions are neglected, in this study.

Eq4: Fuel Consumption [TJ] = Fuel Consumption [t] x 10⁻³ x Fuel Consumption [TJ/kt]

Eq5: Carbon Content [Gg C] = Carbon Emission Factor [tC/TJ] x Fuel Consumption [TJ] x 10-3

Eq6: GHG Emission [Gg CO2e] = Carbon Content [Gg C] x Conversion Factor

METHODOLOGY / EVALUATION OF ENVIRONMENTAL IMPACTS

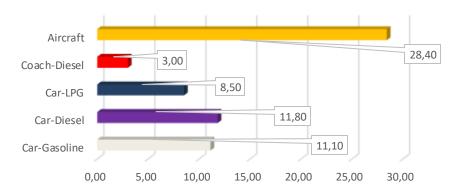
The 20 years total GHG emission avoided is 11.119,71 kt CO_2e which means average annual GHG emission avoided is 555,99 kt CO_2e .

This value constitutes only 0,69 % of total GHG emissions of transportation of Türkiye, in 2020.

While, average value of emission is 69,548 gCO₂e/pkm, these values change between 57,869 g CO₂e/pkm to 93,806 g CO₂e/pkm according to the routes.

Routes	GHG Emis.		
noules	ktCO ₂ e	gCO2e / pkm	KgCO ₂ e /pss
Ankara - İstanbul	1.948,68	60,232	22,948
Ankara - Eskişehir	447,95	76,569	16,769
Ankara - Konya	1.014,52	72,305	20,462
Ankara - Karaman	552,27	71,873	28,246
İstanbul - Konya	1.532,48	75,767	41,520
İstanbul - Karaman	376,73	77,616	51,071
İstanbul - Eskişehir	90,89	93,806	15,196
Ankara - Sivas	1.300,33	76,090	29,980
Ankara - Kayseri	468,3	72,887	21,793
Ankara - İzmir	1.443,57	63,712	39,947
Bandırma - Bursa	83,18	77,513	7,364
Bursa - Ankara	276,9	72,361	30,319
Bursa - Eskişehir	106,34	68,339	13,668
İstanbul - Bursa	147,33	62,753	10,919
Kapıkule - İstanbul	373	77,739	17,802
Konya - Karaman	150,97	60,895	8,038
Konya - Ulukışla	246,1	57,869	14,004
Adana - Gaziantep	560,17	75,576	15,871
Average	559,99	69,548	23,845
Total	11.119,71		

METHODOLOGY / EVALUATION OF ECONOMIC BENEFITS


	Econ. Benefits		
Routes	Million EURO	EURO/1000 pkm	EURO/Passenger
Ankara - İstanbul	124,67	3,853	1,468
Ankara - Eskişehir	21,91	3,745	0,82
Ankara - Konya	49,91	3,557	1,007
Ankara - Karaman	27,17	3,536	1,39
İstanbul - Konya	95,34	4,714	2,583
İstanbul - Karaman	19,04	3,923	2,581
İstanbul - Eskişehir	4,57	4,717	0,764
Ankara - Sivas	80,72	4,723	1,861
Ankara - Kayseri	21,44	3,337	0,998
Ankara - İzmir	89,21	3,937	2,469
Bandırma - Bursa	3,89	3,625	0,344
Bursa - Ankara	13,11	3,426	1,435
Bursa - Eskişehir	5,00	3,213	0,643
İstanbul - Bursa	6,84	2,913	0,507
Kapıkule - İstanbul	17,88	3,726	0,853
Konya - Karaman	7,62	3,074	0,406
Konya - Ulukışla	11,82	2,779	0,673
Adana - Gaziantep	26,21	3,536	0,743
Average	31,32	3,917	1,343
Total	626,35		

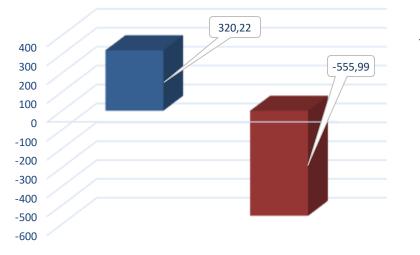
To calculate Economic Net Present Value (ENPV) cash flow method and social discount rate (5 %)* were used.

*Ref: Guide to Cost – Benefit analysis of Investment Projects, European Commission 2014

Externality costs are available in Handbook on the External Costs of Transport, European Commission.

In the unit of EURO / 1000 pkm.

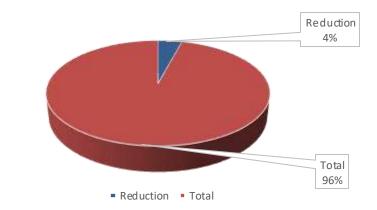
Evaluation of Environmental Impacts and Economic Benefits of Greenhouse Gas Emissions of High – Speed Rail Lines in Türkiye


11

CONCLUSIONS

Annual average reduction of GHG of HSR during the 20 year period are calculated as 555,99 kt CO₂e.

Railway GHG emission in 2020 were 320,22 kt CO2e.


Average reduction is 1,74 times greater than emission.

Passenger demand scenario of this study accepts modal split share of railway as 1 % of total passenger.

If the modal split share of railway were increased to 5 % of total passenger, the GHG reduction of high – speed rail would be nearly 3.474,03 kt CO₂e

It means that 4,31 % of total GHG emissions of transportation of Türkiye, in 2020.

THANK YOU

abdullahmurateser@tcdd.gov.tr

